La suplementación con zumo de remolacha (rico en nitratos que aumentan los niveles de óxido nítrico) es una potencial ayuda ergogénica emergente que atrae el interés de los investigadores que buscan si realmente es una ayuda ergogénica eficaz para los atletas que la usan, con el fin de mejorar los efectos del entrenamiento y lograr mejoras en su rendimiento atlético. Se postula ya desde hace ya varios años, que el jugo de remolacha aumenta los niveles de óxido nítrico (NO), que sirve a múltiples funciones relacionadas con el aumento del flujo sanguíneo, intercambio de gases, la biogénesis mitocondrial como su eficiencia, y el fortalecimiento de la contracción muscular. Estas mejoras en estos biomarcadores indican que la suplementación con jugo de remolacha podría tener efectos ergogénicos sobre la resistencia cardiorrespiratoria que beneficiaría el rendimiento atlético.

Objetivo

Recientemente un grupo español ha publicado los resultados de una revisión sistemática Nutrients. 2017 Jan 6 sobre los posibles efectos ergogénicos del zumo de remolacha sobre el rendimiento en resistencia aeróbica. El objetivo de esta revisión de la literatura actual fué determinar los efectos de la suplementación de jugo de remolacha y la combinación de jugo de remolacha con otros suplementos sobre la resistencia cardiorrespiratoria en atletas. Una búsqueda de palabras clave en las bases de datos de DialNet, MedLine, PubMed, Scopus y Web of Science abarcó las publicaciones de 2010 a 2016. Después de excluir las revisiones / metaanálisis, estudios en animales, textos inaccesible y estudios que no complementaban el jugo de remolacha adecuadamente. Seleccionaron 23 artículos para su análisis.

Resultados

Los resultados disponibles sugieren que la suplementación con jugo de remolacha podría tener un efecto ergogénico sobre la reducción del VO2 a menos o igual a la intensidad del VO2máx, al tiempo que mejora la relación entre vatios requeridos y VO2, mecanismos que permiten aumentar el tiempo de agotamiento a menos de O igual a la intensidad del VO2max. Tambien podría mejorar la resistencia cardiorrespiratoria en atletas aumentando la eficiencia, lo que mejora el rendimiento a varias distancias, aumenta el tiempo de agotamiento a intensidades submáximas y puede mejorar el rendimiento cardiorrespiratorio a intensidades de umbral anaeróbico y absorción máxima de oxígeno (VO2max).  Aparentemente, los efectos de la suplementación con el jugo de remolacha podrían no tener una interacción positiva con la suplementación de cafeína, mitigando los efectos de la ingesta de jugo de remolacha en el rendimiento cardiorrespiratorio, sin embargo, se necesita más trabajo para confirmar los resultados de estas investigaciones debido al número de estudios analizando. Los efectos de la combinación de jugo de remolacha con otros suplementos, como la cafeína, son limitados. El consumo de jugo de remolacha debe iniciarse dentro de los 90 minutos antes del esfuerzo atlético, ya que el valor máximo de NO3 – se produce 2-3 horas después de la ingestión. Se requiere por lo menos 6-8 mmol de NO3 – .También destacar que la ingesta, puede ser aumentada en atletas con un alto nivel de entrenamiento.

Conclusión

Los autores hipotetizan sobre la base de resultados contradictorios. «Los hallazgos de otros estudios nos llevan a plantear la hipótesis de que la suplementación con jugo de remolacha podría mitigar los efectos ergolíticos de la hipoxia sobre la resistencia cardiorrespiratoria en atletas. No se puede afirmar que la combinación de jugo de remolacha con otros suplementos tenga un efecto positivo o negativo sobre la resistencia cardiorrespiratoria, pero es posible que los efectos de la suplementación con el jugo de remolacha puedan verse afectados por la interacción con otros suplementos como la cafeína».

Referencias:

  1. Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical  activity,  exercise, and physical  fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [PubMed]
  2. Bassett, D.R.; Howley, E.T. Limiting factors  for máximum oxygen uptake and  determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [CrossRef] [PubMed]
  3. Bentley,  D.J.; Newell, J.; Bishop,  D. Incremental Exercise  Test  Design and  Analysis:  Implications for Performance Diagnostics in Endurance Athletes. Sports Med. 2007, 37, 575–586. [CrossRef] [PubMed]
  1. Burnley, B.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport. Sci. 2007, 7, 63–79. [CrossRef]
  1. Jung,  A.P. The Impact of Resistance Training on Distance Running Performance. Sports Med.  2003, 33, 539–552. [CrossRef] [PubMed]
  1. Paton, C.D.; Hopkins, W.G. Performance Enhancement at the Fifth World Congress on Sport Sciences; University of Otago:  Dunedin, New Zealand, 1999; Volume  3.
  1. Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Leberman, H.R. Prevalence of dietary supplement use by athletes: Systematic review and meta-analysis. Sports Med. 2016, 46, 103–123. [CrossRef] [PubMed]
  2. Rodríguez, N.R.; Rodríguez, N.S.; Di Marc, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic  performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [PubMed]
  3. Australian Institute of Sport. ABCD Classification System. 2016. Available online: http://www.ausport.gov. au/ais/nutrition/supplements/classification (accessed  on 5 January 2017).
  4. Close, G.L.; Hamilton, L.; Philps, A.; Burke,  L.; Morton, J.P. New  strategies in sport nutrition to increase Exercise Performance. Free Radic. Biol. Med. 2016, 98, 144–158. [CrossRef] [PubMed]
  1. Burke, L. Nutrición en el Deporte; Medica Panamericana: Madrid, Spain, 2010.
  2. Murphy, M.; Eliot, K.; Heuertz, R.; Weiss,  E. Whole  Beetroot Consumption Acutely Improves Running Performance. J. Acad. Nutr.  Diet. 2012, 112, 548–552. [CrossRef] [PubMed]
  1. Duncan, H.; Dougall, P.; Johnston, P.; Green,  S.; Brogan,  R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin,  N. Chemical generation of nitric  oxide  in the  mouth from  the  enterosalivary circulation of dietary nitrate. Nat. Med. 1995, 1, 546–551. [CrossRef] [PubMed]
  1. Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric  oxide. Free Radic. Biol. Med. 2004, 37, 395–400. [CrossRef] [PubMed]
  1. Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Di Menna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2  cost of low-intensity exercise  and  enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. 2009, 107, 1144–1155. [CrossRef] [PubMed]
  2. Ferguson, S.K.; Hirai,  D.M.; Copp,  S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch,  T.I.; Poole, D.C. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats.
  1. Physiol. 2013, 591, 547–557. [CrossRef] [PubMed]
  1. Larsen, F.J.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [CrossRef] [PubMed]
  1. Erzurum, S.C.; Ghosh, S.; Janocha, A.J.; Xu, W.; Bauer, S.; Bryan,  N.S.; Tejero, J.; Hermann, C.; Hille,  R.; Stuehr, D.J.; et al.  Higher blood  flow  and  circulating NO  products offset  high-altitude hypoxia among Tibetans. Proc. Natl. Acad. Sci. USA 2007, 104, 17593–17598. [CrossRef] [PubMed]
  2. Stamler, J.S.; Meissner, G. Physiology of nitric oxide  in skeletal muscle. Physiol.  Rev. 2001, 81, 209–237. [PubMed]
  3. Andrade, F.H.; Reid, M.B.; Allen, D.G.; Westerblad, H. Effect of nitric oxide on single skeletal muscle  fibres from the mouse.  J. Physiol. 1998, 509, 577–586. [CrossRef] [PubMed]
  4. Wink, D.A.;  Hines, H.B.;  Cheng, R.Y.; Switzer, C.H.;  Flores-Santana, W.;  Vitek,  M.P.;  Ridnour,  L.A.; Colton,  C.A. Nitric oxide and redox  mechanisms in the immune response. J. Leukoc. Biol. 2011, 89, 873–891. [CrossRef] [PubMed]
  5. Tong, L.; Heim,  R.A.; Wu, S. Nitric  oxide:  A regulator of eukaryotic initiation factor  2 kinases. Free Radic. Biol. Med. 2011, 50, 1717–1725. [CrossRef] [PubMed]
  1. Kerley, C.P.;  Cahill,  K.;  Bolger,  K.;  McGowan, A.;  Burke,  C.;  Faul,  J.;  Cromican, L. Dietary nitrate supplementation in  COPD:  An  acute,   double-blind,  randomized,  placebo-controlled, crossover trial. Nitric Oxide 2015, 44, 105–111. [CrossRef] [PubMed]
  2. Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension 2015, 65, 320–327. [CrossRef] [PubMed]
  3. Zamani, P.; Rawat, D.; Shiva-Kumar, P.; Geraci, S.; Bhuva,  R.; Konda, P.; Doulias, P.T.; Ischiropoulos, H.; Townsend, R.R.; Margulies, K.B.; et al. Effect of inorganic nitrate on exercise capacity in heart  failure  with preserved ejection fraction.  Circulation 2015, 131, 371–380. [CrossRef] [PubMed]
  4. Nyström, T.; Ortsäter, H.; Huang, Z.; Zhang, F.; Larsen,  F.J.; Weitzberg, E.; Lundberg, J.O.; Sjöholm,  Å. Inorganic nitrite  stimulates pancreatic islet blood  flow and insulin secretion. Free Radic. Biol. Med. 2012, 53, 1017–1023. [CrossRef] [PubMed]
  1. Lansley, K.E.; Winyard, P.G.; Bailey,  S.J.; Vanhatalo, A.; Wilkerson, D.P.;  Blackwell, J.R.; Gilchrist,  M.; Benjamin, N.; Jones, A.M. Acute Dietary Nitrate  Supplementation Improves Cycling Time Trial Performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [CrossRef] [PubMed]
  2. Berthon, P.; Fellman, N.; Bedu, M.; Beaune, B.; Dabonneville, M.; Coudert, J.; Chamouz, A. A 5-min running test as a mesaurement of maximal aerobic velocity. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 233–238. [CrossRef] [PubMed]
  3. Peeling, P.; Cox, G.; Bullock, N.; Burke, L. Beetroot Juice Improves On-Water 500 M Time-Trial Performance, and Laboratory-Based Paddling Economy in National and International-Level Kayak Athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 278–284. [CrossRef] [PubMed]
  4. Cermak, N.;  Gibala,  M.;  Van  Loon,  J. Nitrate Supplementation’s Improvement of  10-km  Time-Trial Performance in Trained Cyclists.  Int. J. Sport Nutr.  Exerc. Metab. 2012, 22, 64–71. [CrossRef] [PubMed]
  1. Whitfield, J.; Ludzki, A.; Heigenhauser, G.; Senden, S.; Verdijk,  L.; Van,  L.; Spriet,  L.L.; Holloway, G.P. Beetroot Juice Supplementation Reduces  Whole Body Oxygen  Consumption But Does Not Improve Indices Of Mitochondrial Efficiency in Human Skeletal Muscle.  J. Physiol. 2016, 594, 421–435. [CrossRef]
  1. Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [CrossRef]
  1. Thompson, K.; Turnerb, L.; Prichardb, J.; Doddb, F.; Kennedyb, D.; Haskellb, C.; Blackwell, J.R.; Jones, A.M. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise.  Respir. Physiol. Neurobiol. 2014, 193, 11–20. [CrossRef] [PubMed]
  1. Muggeridge, D.; Howe, D.; Spendiff, O.; Pedlar, C.; James,  P.; Easton,  C. The Effects of a Single  Dose of Concentrated Beetroot Juice on Performance in Trained Flatwater Kayakers. Int. J. Sport Nutr.  Exerc. Metab. 2013, 23, 498–506. [CrossRef] [PubMed]
  1. Kelly,  J.; Vanhatalo, A.; Wilkerson, D.; Wylie,  L.; Jones,  A.M. Effects of Nitrate on the  Power-Duration Relationship for Severe-Intensity Exercise. Med. Sci. Sports Exerc. 2013, 45, 1798–1806. [CrossRef] [PubMed]
  1. Vanhatalo, A.; Bailey,  S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey,  T.G.;  Wilkerson, D.P.;  Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic  effects of dietary nitrate supplementation on blood  pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, 1121–1131. [CrossRef] [PubMed]
  2. Breese, B.C.;  McNarry, M.A.;   Marwood, S.;  Blackwell, J.R.;  Bailey,  S.J.;  Jones,  A.M.  Beetroot  juice supplementation speeds  O2 uptake kinetics and improves exercise tolerance  during severe-intensity exercise initiated from an elevated metabolic rate.  Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, 1441–1450. [CrossRef]
  3. Pinna, M.; Roberto, S.; Milia, R.; Maronquiu, E.; Olla, S.; Loi, A.; Migliaccio, G.M.; Padulo, J.; Orlandi, C.; Tocco, F.; et al. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients 2014, 6, 605–615. [CrossRef] [PubMed]
  1. Muggeridge, D.J.; Howe, C.; Spendiff, O.; Pedlar, C.; James, P.; Easton, C. A Single Dose of Beetroot Juice Enhances Cycling  Performance in Simulated Altitude. Med. Sci. Sports Exerc. 2014, 46, 143–150. [CrossRef] [PubMed]
  2. MacLeod, K.E.; Nugent, S.F.; Barr, S.; Khoele,  M.S.; Sporer, B.C.; Maclnnis, M.J. Acute  Beetroot Juice Supplementation Does Not Improve Cycling  Performance in Normoxia or Moderate Hypoxia. Int. J. Sport Nutr.  Exerc. Metab. 2015, 25, 359–366. [CrossRef] [PubMed]
  3. Arnold, J.; James, L.; Jones, T.; Wylie, L.; Macdonald, J. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl. Physiol. Nutr.  Metab. 2015, 40, 590–595. [CrossRef] [PubMed]
  4. Boorsma, R.K.; Whitfield, S.L. Beetroot Juice Supplementation Does  Not  Improve Performance of Elite 1500-m Runners. Med. Sci. Sports Exerc. 2014, 46, 2326–2334. [CrossRef] [PubMed]
  1. Kelly, J.; Vanhatalo, A.; Bailey, S.J.; Wylie, L.J.; Tucker, C.; List, S.; Winyard, P.G.; Jones, A.M. Dietary nitrate supplementation: Effects on plasma nitrite  and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, 920–930. [CrossRef] [PubMed]
  2. Masschelein, E.; Van Thienen, R.; Wang,  X.; Van  Schepdael, A.; Thomis, M.; Hespel, P. Dietary nitrate improves muscle  but not cerebral  oxygenation status  during exercise in hypoxia. J. Appl. Physiol. 2012, 113, 736–745. [CrossRef] [PubMed]
  1. Handzlik, L.; Gleeson,  M. Likely Additive Ergogenic Effects of Combined Preexercise Dietary Nitrate and Caffeine Ingestion in Trained Cyclists.  ISRN Nutr.  2013, 2013, 396581. [CrossRef] [PubMed]
  1. Glaister, M.; Pattison, J.R.; Muniz-Pumares, D.; Patterson, S.D.; Foley, P. Effects of dietary nitrate, caffeine, and their  combination on 20-km cycling  time  trial  performance. J. Strength  Cond. Res. 2015, 29, 165–174. [CrossRef] [PubMed]
  2. Lane,  S.;  Hawley, J.; Desbrow, B.; Jones,  A.M.;  Blackwell, J.; Ross,  M.L.;  Zemski, A.J.;  Burke,  L.M. Single and combined effects of beetroot  juice and caffeine supplementation on cycling time trial performance. Appl. Physiol. Nutr.  Metab. 2014, 39, 1050–1057. [CrossRef] [PubMed]
  1. Puype, J.; Ramaekers, M.; Thienen, R.; Deldicque, L.; Hespel,  P. No effect of dietary nitrate  supplementation on endurance training in hipoxia.  Scand. J. Med. Sci. Sports 2015, 25, 234–241. [CrossRef] [PubMed]
  2. Betteridge, S.; Bescós, R.; Martorell, M.; Pons, A.; Garnham, A.P.; Stathis,  C.C.; McConell, G.K. No effect of acute  beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.  J. Appl. Physiol. 2016, 120, 391–398. [CrossRef] [PubMed]
  3. Bailey, S.J.; Fulford, J.; Vanhatalo, A.;  Winyard, P.G.;  Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency  during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [CrossRef] [PubMed]
  4. Xu, F.; Rhodes, E.C. Oxygen uptake kinetics during exercise.  Sports Med.  1999, 27, 313–327.  [CrossRef] [PubMed]
  5. Lucía, A.; Pardo, J.; Durántez, A.; Hoyos, J.; Chicharro, J.L. Physiological differences between professional and elite road  cyclists. Int. J. Sports Med. 1998, 19, 342–348. [CrossRef] [PubMed]
  6. Pérez, M.; Santalla, A.; Chicharro, J.L. Effects of electrical stimulation on VO2 kinetics and delta efficiency in healthy young men. Br. J. Sports Med. 2003, 37, 140–143. [CrossRef] [PubMed]
  7. Lucía, A.; Sánchez, O.; Carvajal, A.; Chicharro, J.L. Analysis of the  aerobic-anaerobic transition in elite cyclists during incremental exercise with  the use of electromyography. Br. J. Sports Med. 1999, 33, 178–185. [CrossRef] [PubMed]
  1. Santalla, A.; Pérez, M.; Montilla, M.; Vicente,  L.; Davison, R.; Earnest, C.; Lucía, A. Sodium bicarbonate ingestion does not alter the slow component of oxygen  uptake kinetics in professional cyclists. J. Sports Sci. 2003, 1, 39–47. [CrossRef]
  1. Jones, L.W.; Liang, Y.; Pituskin, E.N.; Battaglini, C.L.; Scott, J.M.; Hornsby, W.E.; Haykowsky, M. Effect of Exercise Training on Peak Oxygen  Consumption in Patients with Cancer: A Meta-Analysis. Oncologist 2011, 16, 112–120. [CrossRef] [PubMed]
  1. Clerc, P.; Rigoulet,  M.; Leverve,  X.; Fontaine, E. Nitric oxide increases oxidative phosphorylation efficiency.
  2. Bioenerg. Biomembr. 2007, 39, 158–166. [CrossRef] [PubMed]
  3. Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts.  Sports Med. 2009, 39, 469–490. [CrossRef] [PubMed]
  4. Beaver, W.L.; Wasserman, K.; Whipp,  B.J. A new method for detecting anaerobic threshold by gas exchange.
  5. Appl. Physiol. 1986, 60, 2020–2027. [PubMed]
  6. Galler, S.; Hilber,  K.; Gobesberger, A. Effects of nitric oxide on force-generating proteins of skeletal  muscle. Pflug. Arch. 1997, 434, 242–245. [CrossRef] [PubMed]
  1. Bescós, R.;  Sureda, A.;  Tur,  J.A.;  Pons,  A. The  effect  of Nitric-Oxide-related supplements on  human performance. Sports Med. 2012, 42, 99–117. [CrossRef] [PubMed]
  2. Hernández, A.; Schiffer,  T.A.;  Ivarsson, N.;  Cheng, A.J.;  Bruton, J.D.;  Lundberg, J.O.;  Weitzberg, E.; Westerblad, H. Dietary nitrate increases tetanic [Ca2+ ]i and  contractile force in mouse fast-twitch muscle. J. Physiol. 2012, 590, 3575–3583. [CrossRef] [PubMed]
  3. Koehle, M.S.; Cheng, I.; Sporer, B. Canadian academy of sport and  exercise  medicine position statement: Athletes at high altitude. Clin. J. Sport Med. 2014, 24, 120–127. [CrossRef] [PubMed]
  4. Droma, Y.; Hanaoka, M.;  Ota,  M.; Katsuyama, Y.; Koizumi, T.; Fujimoto, K.; Kobayashi, T.; Kubo,  K. Positive association of  the  endothelial nitric  oxide  synthase gene  polymorphisms with   highaltitude pulmonary edema. Circulation 2002, 106, 826–830. [CrossRef] [PubMed]
  1. Duplain, H.; Sartori, C.; Lepori,  M.; Eqli, M.; Alemann, Y.; Nicod, P.; Scherrer, U. Exhaled nitric  oxide  in highaltitude pulmonary edema:  Role in the regulation of pulmonary vascular tone and evidence for a role against inflammation. Am. J. Respir. Crit. Care Med. 2000, 162, 221–224. [CrossRef] [PubMed]
  2. Casey, D.P.; Madery, B.D.; Curry, T.B.; Eisenach, J.H.; Wilkins, B.W.; Joyner, M.J. Nitric oxide contributes to the augmented vasodilation during hypoxic  exercise.  J. Physiol. 2010, 588, 373–385. [CrossRef] [PubMed]
  3. Hoffman, J.R.; Kang, J.; Ratamess, N.A.; Jennings, P.F.; Mangine, G.T.; Faigenbaum, A.D. Effect of nutritionally enriched coffee consumption on aerobic and anaerobic exercise performance. J. Strength Cond. Res. 2007, 21, 456–459. [CrossRef] [PubMed]
  1. Stear, S.J.; Castell, L.M.; Burke, L.M.; Spriet, L.L. BJSM reviews: A-Z of supplements: Dietary supplements, sports nutrition foods  and  ergogenic aids  for health and  performance—Part 6. Br. J. Sports Med. 2010, 44, 297–308. [CrossRef] [PubMed]
  1. Williams, J.H. Caffeine, neuromuscular function and high-intensity exercise performance. J. Sports Med. Phys. 1991, 31, 481–489.
  1. Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and  cellular mechanisms of action.  Crit. Rev. Food Sci. Nutr.  2005, 45, 535–562. [CrossRef] [PubMed]
  2. Goldstein, E.; Jacobs, P.L.; Whiterhurst, M.; Penhollow, T.; Antonio, J. Caffeine airnticele enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010, 14, 7–18.
  3. Bell, D.G.; McLellan, T.M. Exercise endurance 1, 3, and  6 h after  caffeine  ingestion in caffeine  users and nonusers. J. Appl. Physiol. 2002, 93, 1227. [CrossRef] [PubMed]
  4. Schneiker, K.T.; Bishop, D.; Dawson, B.; Hackett, L.P. Effects of caffeine  on prolonged intermittent-sprint ability in team-sport athletes. Med. Sci. Sports Exerc. 2006, 38, 578–585. [CrossRef] [PubMed]
  5. Stuart, G.R.; Hopkins, W.G.; Cook, C.; Cairns, S.P. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med. Sci. Sports Exerc. 2005, 37, 1998–2005. [CrossRef] [PubMed]
  6. Desbrow, B.; Biddulph, C.; Devlin, B.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. The effects of different doses  of caffeine  on endurance cycling  time  trial  performance. J. Sports Sci. 2012, 30, 115–120. [CrossRef] [PubMed]
  7. Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield,  J.; Benjamin,  N. Acute blood  pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite.  Hypertension 2008, 51, 784–790. [CrossRef] [PubMed]
  1. Govoni, M.; Jansson, E.A.; Weitzberg, E.; Lundberg, J.O. The increase in plasma nitrite after a dietary nitrate load  is markedly attenuated by an antibacterial mouthwash.  Nitric Oxide 2008, 19, 333–337.  [CrossRef] [PubMed]
  2. Jones,  A.M.  Dietary Nitrate Supplementation and  Exercise  Performance.  Sports Med.  2014, 44, 35–45. [CrossRef] [PubMed]