Efectos del Cortisol sobre el metabolismo de los Hidratos de carbono.

Estimulación de la gluconeogénesis:

El efecto metabólico más conocido del cortisol y otros glucocorticoides sobre el metabolismo es su capacidad para estimular la gluconeogénesis (síntesis de glucosa a partir de proteínas y algunas otras sustancias) en el hígado; con frecuencia incrementa la velocidad de la gluconeogénesis hasta seis veces Esto se debe a que todas las enzimas que se requieren para convertir aminoácidos en glucosa se incrementan en las células hepáticas; como resultado de la activación de la transcripción de DNA en el núcleo de las células hepáticas causada por los glucocorticoides. Además el cortisol moviliza aminoácidos de los tejidos extrahepáticos, principalmente de músculo. Como consecuencia se dispone de más aminoácidos en el plasma para entrar en el proceso de la gluconeogénesis hepática y por tanto promover la síntesis de glucosa.

b. reducción del consumo de glucosa en las células:

El cortisol también causa reducción moderada del consumo de glucosa en las células. No se sabe cuál es la causa de esta disminución, pero la mayoría de los fisiólogos piensa que el cortisol retarda directamente la velocidad de consumo de glucosa en algún punto entre la penetración de la glucosa a las células y su descomposición final.

c. Elevación de la glucemia y diabetes suprarrenal:

El incremento en la velocidad de gluconeogénesis y la reducción moderada de la velocidad de consumo de la glucosa en las células son dos factores que elevan la glucemia. El incremento de la concentración de glucosa en sangre en ocasiones puede ser tan grande – 50% ó más arriba de lo normal – que se le ha denominado diabetes suprarrenal (con el significado de glucemia elevada).

 2.- Sobre el metabolismo de proteínas.

Disminución de las proteínas celulares:

Uno de los principales efectos del cortisol sobre los sistemas metabólicos del cuerpo es la disminución de las reservas de proteína en casi todas las células, excepto las hepáticas. Este descenso se debe tanto a la reducción de la síntesis de proteínas como al aumento del catabolismo de las ya presentes en la célula. Ambos efectos tal vez resulten de la disminución del transporte de aminoácidos al interior de los tejidos extrahepáticos, pero es probable que ésta no sea la única causa puesto que el cortisol también deprime la síntesis de RNA en muchos tejidos fuera del hígado, sobre todo músculo y tejido linfoide.

Incremento en las proteínas plasmáticas y hepáticas:

En coincidencia con la reducción de proteínas en todo el cuerpo se presenta un aumento en las proteínas hepáticas. También las proteínas del plasma (producidas en el hígado y luego liberadas a la sangre) se incrementan.

Incremento de aminoácidos sanguíneos, disminución del transporte de aminoácidos al interior de células extrahepáticas e incremento del transporte hacia las células hepáticas:

Estudios recientes en tejidos aislados demuestran que el cortisol deprime el transporte de aminoácidos al interior de las células musculares y quizás en otras células fuera del hígado; pero, en contraste, aumenta el transporte en las células hepáticas.

3.- Sobre el metabolismo de grasas.

a) Movilización de ácidos grasos:

El cortisol moviliza ácidos grasos del tejido adiposo casi de la misma manera en que promueve la movilización de aminoácidos del músculo. Esto a su vez incrementa la concentración de ácidos grasos libres en plasma, lo que también eleva su consumo como energéticos. Asimismo, el cortisol aumenta moderadamente la oxidación de ácidos grasos en la célula quizá como resultado secundario de la menor disponibilidad de productos glucolíticos para el metabolismo.

FUNCION DEL CORTISOL EN EL ESTRÉS Y LA INFLAMACIÓN.

Es sorprendente que casi cualquier tipo de estrés, sea físico o mental, cause de inmediato un notable incremento en la secreción de ACTH (hormona adrenocorticotrópica) por la adenohipófisis, seguida unos minutos después por un gran incremento en la secreción de cortisol por la glándula suprarrenal. Algunos de los tipos de estrés que incrementan la liberación de cortisol son los siguientes

Traumatismo casi de cualquier tipo

Infección.

Calor o frío intenso.

Inyección de noradrenalina y otros fármacos simpatomiméticos.

Intervención quirúrgica.

Inyección subcutánea de sustancias necrosantes.

Restricciones al movimiento, en caso de un animal.

Casi cualquier enfermedad debilitante.

 Así, una gran variedad de estímulos inespecíficos pueden producir un acentuado incremento en la velocidad de secreción de cortisol por la corteza suprarrenal.

Efectos antiinflamatorios del cortisol.

Los tejidos casi siempre se inflaman cuando se dañan por traumatismo, infección bacteriana o de cualquier otro modo. En ciertas condiciones la inflamación es más dañina que el traumatismo o la propia enfermedad. Habitualmente la administración de grandes cantidades de cortisol puede impedir la inflamación o incluso revertir muchos de sus efectos una vez que se iniciaron.

 Básicamente son cinco las principales etapas de la inflamación:

Liberación de sustancias químicas activadoras del proceso inflamatorio por las células de los tejidos dañados –sustancias químicas como histamina, bradicinina, prostaglandinas, leucotrienos y enzimas proteolíticas-.

Incremento del flujo sanguíneo en la región inflamada que se debe a alguno de los productos liberados de los tejidos, signo que se conoce como eritema.

Derrame de grandes cantidades de plasma casi puro de los capilares hacia las zonas dañadas, seguido de coagulación del líquido tisular, lo que causa un edema de tipo blando.

Infiltración del área leucocitos.

Cicatrización del tejido, con frecuencia efectuada al menos en parte por crecimiento hacia dentro del tejido fibroso.

Uno de los efectos antiinflamatorios más importantes del cortisol es su capacidad para estabilizar la membrana de los lisosomas intracelulares; es decir, el cortisol vuelve más difícil la rotura de la membrana lisosomal. Por tanto, se libera en cantidad mucho menor la mayor parte de las enzimas proteolíticas causantes de inflamación que dejan salir las células dañadas y sintetizan sobre todo los lisosomas

Cualquiera que sea el mecanismo exacto del efecto antiinflamatorio, puede desempeñar una función importante para combatir ciertas enfermedades como artritis reumatoide, fiebre reumática y glomerulonefritis aguda.

 

REGULACIÓN DE LA SECRECIÓN DE CORTISOL

La secreción de cortisol está determinada por el índice de secreción de ACTH por parte de la adenohipófisis bajo la estimulación del factor de liberación de corticotropina (CRF) procedente del hipotálamo. El índice de secreción de CTH representa el balance entre las influencias estimuladoras del sistema nervioso central y las inhibidoras del cortisol circulante sobre la hipófisis o los centros hipotalámicos. El descenso del cortisol plasmático no unido a proteínas produce un aumento en la secreción de ACTH, y un ascenso inhibe dicha secreción. Sin embargo, pueden producirse variaciones diarias de los niveles de ACTH en el plasma en ausencia de toda variación de los niveles plasmáticos de cortisol (enfermedad de Addison), por lo que la periodicidad circadiana parece ser secundaria a la periodicidad en la secreción de ACTH. Esta secreción puede comenzar a concentración cero de cortisol en plasma o a una alta concentración de cortisol o ACTH, por lo que es dudoso que el concepto usual de un mecanismo cerrado de retroacción negativa cumpla alguna función en la regulación minuto a minuto de la secreción de cortisol en el hombre.

 En el hombre, el índice de secreción basal de ACTH se ha calculado en unos 10μg/día y la concentración plasmáticas entre las 6 y las 9 de la mañana en 20-100 pg/ml. Las concentraciones plasmáticas de ACTH y cortisol muestran en individuos normales no sometidos a estrés variaciones cíclicas constantes en un periodo de 24 horas. En sujetos que tienen un ciclo sueño-vigilia normal, los niveles plasmáticos son el resultado de una serie de episodios secretorios distintos y son más elevados entre las 6 y las 9 de la mañana, para descender lentamente a continuación hasta alcanzar valores próximos a cero cerca de medianoche. La secreción episódica de cortisol y ACTH representa una serie de impulsos de amplitud y duración variable; durante estos episodios, el índice de secreción de cortisol puede variar hasta 10 veces. Los impulsos de secreción guardan correlación generalmente con la concentración plasmática de ACTH. No obstante, algunos individuos muestran escasa correlación entre la ACTH detectable por inmunoensayo o bioensayo y el cortisol plasmático. El ritmo circadiano depende del esquema sueño-vigilia, y es independiente de la ingestión de alimentos, del ejercicio o de la luz. El acto inmediato de dormirse o despertarse no es el determinante directo de la actividad hipofisosuprarrenal, y el aumento de ACTH que se produce a diario antes del despertar es probablemente una respuesta condicionada debida a la anticipación subconsciente de dicho despertar.