Introducción

En el año 2030, 3,48 millones de ancianos estadounidenses adultos se someten a una artroplastia total de rodilla (PTR). Después de esta cirugía, sucede una considerable atrofia muscular  , lo que resulta en una disminución de la fuerza como la movilidad funcional deteriorada. Los aminoácidos esenciales (AAE) han demostrado atenuar la pérdida de masa muscular durante periodos de actividad diaria reducida por lo que pueden ser beneficiosos para los pacientes de TKA.

Métodos

Se utilizó un ensayo doble ciego, controlado con placebo, en clínica con 28 adultos mayores sometidos a ATR. Los pacientes fuerón asignados al azar ya sea para el grupo 1: ingerió 20 g de AAE (n = 16) o para el grupo 2: placebo (n = 12) , lo tomarón dos veces al día entre las comidas durante 1 semana antes y 2 semanas después del TKA. Al inicio del estudio, 2 semanas y 6 semanas después de la ATR, se realizó una resonancia magnética para determinar la masa muscular del muslo y el volumen de tejido adiposo. La fuerza muscular y la movilidad funcional se midieron también en estos tiempos.

Resultados

Hubo un gran cambio de -18,4 ± 2,3% desde el inicio hasta 6 semanas después de la cirugía para el placebo versus -6,2 ± 2,2%  el grupo de EAA (F = 14,14, P = 0,001).

JCI70160.t3 JCI70160.t4

Se mostró que los aminoácidos, AAE también atenuarón la atrofia en el cuádriceps que NO fué operado, en los isquiotibiales como en los aductores, músculos de ambas extremidades. Desctacar que el cambio en la atrofia del músculo cuádriceps se asoció significativamente con el cambio en la movilidad funcional (DE = 5,78, P = 0,021).

JCI70160.f2

Conclusión

En este estudio se muestra como el  tratamiento EAA (aminoacidos esenciales) atenúan la atrofia muscular y acelera la recuperación de la movilidad funcional en los adultos mayores con  TKA. Vemos como, no solo es importante una ingesta de aminoácidos para los atletas, si no que también podrían beneficiarse de ellos, personas que padecen artritis, las cuales se han sometido a una operación como la artroplastia total de rodilla.

Referencias

1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg. 2007;89(4):780–785. doi: 10.2106/JBJS.F.00222.[PubMed] [Cross Ref]
2. Lorentzen JS, Petersen MM, Brot C, Madsen OR. Early changes in muscle strength after total knee arthroplasty. A 6-month follow-up of 30 knees. Acta Orthop Scand. 1999;70(2):176–179. doi: 10.3109/17453679909011258. [PubMed] [Cross Ref]
3. Mizner RL, Snyder-Mackler L. Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. J Orthop Res. 2005;23(5):1083–1090. doi: 10.1016/j.orthres.2005.01.021. [PubMed] [Cross Ref]
4. Stevens JE, Mizner RL, Snyder-Mackler L. Quadriceps strength and volitional activation before and after total knee arthroplasty for osteoarthritis. J Orthop Res. 2003;21(5):775–779. doi: 10.1016/S0736-0266(03)00052-4.[PubMed] [Cross Ref]
5. Moxley Scarborough D, Krebs DE, Harris BA. Quadriceps muscle strength and dynamic stability in elderly persons. Gait Posture. 1999;10(1):10–20. doi: 10.1016/S0966-6362(99)00018-1. [PubMed] [Cross Ref]
6. Brown M, Sinacore DR, Host HH. The relationship of strength to function in the older adult. J Gerontol A Biol Sci Med Sci. 1995;50(spec no):55–59. [PubMed]
7. Mizner RL, Petterson SC, Snyder-Mackler L. Quadriceps strength and the time course of functional recovery after total knee arthroplasty. J Orthop Sports Phys Ther. 2005;35(7):424–436. doi: 10.2519/jospt.2005.35.7.424. [PubMed] [Cross Ref]
8. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004;52(7):1121–1129. doi: 10.1111/j.1532-5415.2004.52310.x. [PubMed] [Cross Ref]
9. Finch E, Walsh M, Thomas SG, Woodhouse LJ. Functional ability perceived by individuals following total knee arthroplasty compared to age-matched individuals without knee disability. J Orthop Sports Phys.1998;27(4):255–263. [PubMed]
10. Wylde V, Dieppe P, Hewlett S, Learmonth ID. Total knee replacement: is it really an effective procedure for all? Knee. 2007;14(6):417–423. doi: 10.1016/j.knee.2007.06.001. [PubMed] [Cross Ref]
11. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB. Does total knee replacement restore normal knee function? Clin Orthop Relat. 2005;(431):157–165. [PubMed]
12. Kennedy DM, Stratford PW, Hanna SE, Wessel J, Gollish JD. Modeling early recovery of physical function following hip and knee arthroplasty. BMC Musculoskelet Disord. 2006;7:100. doi: 10.1186/1471-2474-7-100.[PMC free article] [PubMed] [Cross Ref]
13. Zeni JA, Snyder-Mackler L. Early postoperative measures predict 1- and 2-year outcomes after unilateral total knee arthroplasty: importance of contralateral limb strength. Phys Ther. 2010;90(1):43–54. doi: 10.2522/ptj.20090089. [PMC free article] [PubMed] [Cross Ref]
14. Meier WA, et al. The long-term contribution of muscle activation and muscle size to quadriceps weakness following total knee arthroplasty. J Geriatr Phys Ther. 2009;32(2):35–38. doi: 10.1519/00139143-200932020-00007. [PubMed] [Cross Ref]
15. Meier W, Mizner RL, Marcus RL, Dibble LE, Peters C, Lastayo PC. Total knee arthroplasty: muscle impairments, functional limitations, and recommended rehabilitation approaches. J Orthop Sports Phys Ther.2008;38(5):246–256. doi: 10.2519/jospt.2008.2715. [PubMed] [Cross Ref]
16. Petterson SC, et al. Improved function from progressive strengthening interventions after total knee arthroplasty: a randomized clinical trial with an imbedded prospective cohort. Arthritis Rheum. 2009;61(2):174–183. doi: 10.1002/art.24167. [PubMed] [Cross Ref]
17. Yoshida Y, Mizner RL, Ramsey DK, Snyder-Mackler L. Examining outcomes from total knee arthroplasty and the relationship between quadriceps strength and knee function over time. Clin Biomech (Bristol, Avon).2008;23(3):320–328. doi: 10.1016/j.clinbiomech.2007.10.008. [PMC free article] [PubMed] [Cross Ref]
18. Miner AL, Lingard EA, Wright EA, Sledge CB, Katz JN. Knee range of motion after total knee arthroplasty: how important is this as an outcome measure? J Arthroplasty. 2003;18(3):286–294. doi: 10.1054/arth.2003.50046. [PubMed] [Cross Ref]
19. Cesari M, et al. Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J Cachexia Sarcopenia Muscle. 2012;3(3):181–190. doi: 10.1007/s13539-012-0078-2.[PMC free article] [PubMed] [Cross Ref]
20. Fielding RA, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc.2011;12(4):249–256. doi:
10.1016/j.jamda.2011.01.003. [PMC free article] [PubMed] [Cross Ref]
21. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–896. doi: 10.1046/j.1532-5415.2002.50216.x. [PubMed] [Cross Ref]
22. Branch LG, et al. A prospective study of incident comprehensive medical home care use among the elderly.Am J Public Health. 1988;78(3):255–259. doi: 10.2105/AJPH.78.3.255. [PMC free article] [PubMed][Cross Ref]
23. Wolinsky FD, Callahan CM, Fitzgerald JF, Johnson RJ. The risk of nursing home placement and subsequent death among older adults. J Gerontol. 1992;47(4):S173–S182. doi: 10.1093/geronj/47.4.S173. [PubMed][Cross Ref]
24. Ferrucci L, Guralnik JM, Pahor M, Corti MC, Havlik RJ. Hospital diagnoses, Medicare charges, and nursing home admissions in the year when older persons become severely disabled. JAMA. 1997;277(9):728–734. doi: 10.1001/jama.1997.03540330050034. [PubMed] [Cross Ref]
25. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–85. doi: 10.1111/j.1532-5415.2004.52014.x. [PubMed] [Cross Ref]
26. Dreyer HC, Volpi E. Role of protein and amino acids in the pathophysiology and treatment of sarcopenia. J.2005;24(2):140S–145S. [PMC free article] [PubMed]
27. Dillon EL, et al. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab. 2009;94(5):1630–1637. doi: 10.1210/jc.2008-1564. [PMC free article] [PubMed] [Cross Ref]
28. Leenders M, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr. 2011;141:1070–1076. doi: 10.3945/jn.111.138495. [PubMed][Cross Ref]
29. Verhoeven S, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89:1468–1475. doi: 10.3945/ajcn.2008.26668. [PubMed] [Cross Ref]
30. Dreyer HC, et al. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol.2008;294(2):E392–E400. [PMC free article] [PubMed]
31. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB. Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol. 2009;106(5):1730–1739. doi: 10.1152/japplphysiol.90395.2008. [PMC free article] [PubMed][Cross Ref]
32. Jordan LY, Melanson EL, Melby CL, Hickey MS, Miller BF. Nitrogen balance in older individuals in energy balance depends on timing of protein intake. J Gerontol A Biol Sci Med Sci. 2010;65(10):1068–1076.[PMC free article] [PubMed]
33. Breen L, et al. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013;98(6):2604–2612. doi: 10.1210/jc.2013-1502. [PubMed] [Cross Ref]
34. Lawson RM, Doshi MK, Barton JR, Cobden I. The effect of unselected post-operative nutritional supplementation on nutritional status and clinical outcome of orthopaedic patients. Clin Nutr. 2003;22(1):39–46. doi: 10.1054/clnu.2002.0588. [PubMed] [Cross Ref]
35. Lawson RM, Doshi MK, Ingoe LE, Colligan JM, Barton JR, Cobden I. Compliance of orthopaedic patients with postoperative oral nutritional supplementation. Clin Nutr. 2000;19(3):171–175. doi: 10.1054/clnu.1999.0094. [PubMed] [Cross Ref]
36. Parker BA, et al. Effect of statins on skeletal muscle function. Circulation. 2013;127(1):96–103. doi: 10.1161/CIRCULATIONAHA.112.136101. [PubMed] [Cross Ref]
37. Mikus CR, et al. Simvastatin impairs exercise training adaptations. J Am Coll Cardiol. 2013;62(8):709–714. doi: 10.1016/j.jacc.2013.02.074. [PMC free article] [PubMed] [Cross Ref]
38. Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol. 2009;107(3):645–654. doi: 10.1152/japplphysiol.00452.2009. [PubMed] [Cross Ref]
39. Rennie MJ, et al. Facts, noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy.Scand J Med Sci Sports. 2010;20(1):5–9. doi: 10.1111/j.1600-0838.2009.00967.x. [PubMed] [Cross Ref]
40. Combaret L, et al. A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. J Physiol. 2005;569(pt 2):489–499. doi: 10.1113/jphysiol.2005.098004. [PMC free article] [PubMed] [Cross Ref]
41. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol. 2006;291(2):E381–E387. [PubMed]
42. Guillet C, et al. Whole body protein breakdown is less inhibited by insulin, but still responsive to amino acid, in nondiabetic elderly subjects. J Clin Endocrinol Metab. 2004;89(12):6017–6024. doi: 10.1210/jc.2003-031323.[PubMed] [Cross Ref]
43. Matthews DE. Observations of branched-chain amino acid administration in humans. J Nutr. 2005;135(6 suppl):1580S–1584S. [PMC free article] [PubMed]
44. Mizner RL, Petterson SC, Stevens JE, Vandenborne K, Snyder-Mackler L. Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J Bone Joint Surg. 2005;87(5):1047–1053. doi: 10.2106/JBJS.D.01992. [PMC free article] [PubMed] [Cross Ref]
45. Thomas AC, Stevens-Lapsley JE. Importance of attenuating quadriceps activation deficits after total knee arthroplasty. Exerc Sport Sci Rev. 2012;40(2):95–101. doi: 10.1097/JES.0b013e31824a732b.[PMC free article] [PubMed] [Cross Ref]
46. Yoshida Y, Marcus RL, Lastayo PC. Intramuscular adipose tissue and central activation in older adults.Muscle Nerve. 2012;46(5):813–816. doi: 10.1002/mus.23506. [PubMed] [Cross Ref]
47. Goodpaster BH, et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol. 2001;90(6):2157–2165. [PubMed]
48. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89(1):104–110. [PubMed]
49. Manini TM, Clark BC, Nalls MA, Goodpaster BH, Ploutz-Snyder LL, Harris TB. Reduced physical activity increases intermuscular adipose tissue in healthy young adults. Am J Clin Nutr. 2007;85(2):377–384. [PubMed]
50. Marcus RL, Addison O, LaStayo PC. Intramuscular adipose tissue attenuates gains in muscle quality in older adults at high risk for falling. A brief report. J Nutr Health Aging. 2013;17(3):215–218. doi: 10.1007/s12603-012-0377-5. [PubMed] [Cross Ref]
51. Goodpaster BH, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–1064. doi: 10.1093/gerona/61.10.1059. [PubMed] [Cross Ref]
52. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol. 2000;88(4):1321–1326. [PubMed]
53. Kurtz SM, et al. International survey of primary and revision total knee replacement. Int Orthop.2011;35(12):1783–1789. doi: 10.1007/s00264-011-1235-5. [PMC free article] [PubMed] [Cross Ref]
54. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg. 2005;87(7):1487–1497. doi: 10.2106/JBJS.D.02441. [PubMed] [Cross Ref]
55. Ong KL, Mowat FS, Chan N, Lau E, Halpern MT, Kurtz SM. Economic burden of revision hip and knee arthroplasty in Medicare enrollees. Clin Orthop Relat Res. 2006;446:22–28. doi: 10.1097/01.blo.0000214439.95268.59. [PubMed] [Cross Ref]
56. Ratchford SM, et al. Proteins regulating cap-dependent translation are downregulated during total knee arthroplasty. Am J Physiol Regul Integr Comp Physiol. 2012;302(6):R702–R711. doi: 10.1152/ajpregu.00601.2011. [PMC free article] [PubMed] [Cross Ref]
57. McAuliffe M, Lalonde F, McGarry D, Gandler W, Csaky K, Trus B. IEEE Computer Based Medical Sciences (CBMS). Medical image processing, analysis & visualization in clinical research. 2001:381–386.
58. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17(1):87–97. doi: 10.1109/42.668698. [PubMed][Cross Ref]
59. Akima H, et al. Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2012;22(1):16–25. doi: 10.1016/j.nmd.2011.06.750. [PMC free article] [PubMed] [Cross Ref]
60. Bailey AN, et al. MAFbx, MuRF1, and the stress-activated protein kinases are upregulated in muscle cells during total knee arthroplasty. Am J Physiol Regul Integr Comp Physiol. 2012;303(4):R376–R386. doi: 10.1152/ajpregu.00146.2012. [PMC free article] [PubMed] [Cross Ref]
61. Hocker AD, Boileau RM, Lantz BA, Jewett BA, Gilbert JS, Dreyer HC. Physiol Rep. Endoplasmic reticulum stress activation during total knee arthroplasty [published online ahead of print August 22, 2013]. doi:10.1002/phy2.52 . [PMC free article] [PubMed]
62. Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of clustered data.Biometrics. 1998;54(2):638–645. doi: 10.2307/3109770. [PubMed] [Cross Ref]
63. Hedeker D, Gibbons R. In: Longitudinal Data Analyses. Mixed-effects regression models for continuous outcomes. Hoboken, New Jersey, USA: Wiley and Sons. 2006:155–161.