Artículos Ciencia de la Nutrición Recuperación Muscular Sumplementación Deportiva

La ingestión de creatina aumenta la supercompensación del glucógeno muscular

Introducción

La disponibilidad de glucógeno muscular es un limitante del rendimiento en el ejercicio físico, en especial el de resistencia. Varios estudios han demostrado que la ingesta durante 5 días de 5 g de creatina (Cr) más hidratos de carbono (CHO) aumentan los depósitos de glucógeno muscular post-ejercicio comparado con la ingesta de CHO únicamente.

Estudio

Hace ya tiempo se publicó los resultados de un estudio . 2016 US National Library of Medicine cuyo objetivo fue ratificar los hallazgos comentados, a la vez que identificar las posibles causas de esa ayuda o mejora en la reposición del sustrato.

Método

Los sujetos voluntarios pedalearon hasta el agotamiento a una intensidad correspondiente al 70% VO2max. Se obtuvieron muestras musculares por biopsia en reposo, inmediatamente después del ejercicio, y 1, 3 y 6 días post-ejercicio, en dos condiciones: con y sin suplementación con 20 g de Cr/día, con una dieta rica en CHO (37,5 kcal/kg/día; >80% calorías totales).

Resultados

Los resultados mostraron que el ejercicio disminuyó el glucógeno muscular en la misma cuantía en ambos grupos. La suplementación con Cr aumentó los depósitos de glucógeno muscular por encima del grupo placebo, 1 día después de iniciar la suplementación, manteniéndose posteriormente. Los autores confirmaron que la suplementación con Cr +`dieta rica en CHO aumenta los depósitos de glucógeno muscular a las 24 h, aun cuando el contenido de Cr muscular solo aumentó un 10% en el músculo.

 


 

Referencias

  • Aschenbach WG, Hirshman MF, Fujii N, Sakamoto K, Howlett KF, Goodyear LJ. Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes. 2002;51:567–573. doi: 10.2337/diabetes.51.3.567. [PubMed] [Cross Ref]
  • Beck F-X, Grünbein R, Lugmayr K, Neuhofer W. Heat shock proteins and the cellular response to osmotic stress. Cell Physiol Biochem. 2000;10:303–306. doi: 10.1159/000016362. [PubMed][Cross Ref]
  • Bergström J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35:609–616. doi: 10.3109/00365517509095787. [PubMed][Cross Ref]
  • Bergström J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210:309–310. doi: 10.1038/210309a0. [PubMed] [Cross Ref]
  • Bergström J, Hultman E. A study of glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19:218–228. doi: 10.3109/00365516709090629. [PubMed] [Cross Ref]
  • Bergström J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–150. doi: 10.1111/j.1748-1716.1967.tb03720.x. [PubMed][Cross Ref]
  • Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.[PubMed]
  • Casey A, Short AH, Curtis S, Greenhaff PL. The effect of glycogen availability on power output and the metabolic response to repeated bouts of maximal, isokinetic exercise in man. Eur J Appl Physiol. 1996;72:249–255. doi: 10.1007/BF00838647. [PubMed] [Cross Ref]
  • Ceddoa RB, Sweeny G. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. J Physiol. 2004;555:409–421. doi: 10.1113/jphysiol.2003.056291. [PMC free article] [PubMed] [Cross Ref]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. [PubMed] [Cross Ref]
  • Daly MM, Seifter S. Uptake of creatine by cultured cells. Arch Biochem Biophys. 1980;203:317–324. doi: 10.1016/0003-9861(80)90182-4. [PubMed] [Cross Ref]
  • Dentowski A, Opaszowski BH, Blanchnio D, Ponanowski B. Effect of creatine supplementation on the performance in supra-maximal, intermittent exercise. Biol Sport. 1997;14:291–298.
  • Derave W, Eijnde BO, Verbessem P, Ramaekers M, Van Leemputte M, Richter EA, Hespel P. Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. J Appl Physiol. 2003;94:1910–1916. doi: 10.1152/japplphysiol.00977.2002. [PubMed] [Cross Ref]
  • Dunnett M, Harris RC, Orme CE. Reverse-phase-ion-pairing high-performance liquid chromatography of phosphocreatine, creatine and creatinine in equine muscle. Scand J Clin Lab Investig. 1991;51:137–141. doi: 10.1080/00365519109091099. [PubMed] [Cross Ref]
  • Febbraio MA, Koukoulas I. HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol. 2000;89:1055–1060. [PubMed]
  • Febraio MA, Steensberg A, Walsh R, Koukoulas I, Van Hall G, Saltin B, Pedersen BK. Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. J Physiol. 2002;583:911–917. doi: 10.1113/jphysiol.2001.013145. [PMC free article] [PubMed][Cross Ref]
  • Francaux M, Poortmans JR. Effects of training and creatine supplement on muscle strength and body mass. Eur J Appl Physiol. 1999;80:165–168. doi: 10.1007/s004210050575. [PubMed] [Cross Ref]
  • Fryer LGD, Foufelle F, Baines K, Baldwin SA, Woods A, Carling D. Characterisation of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Biochem J. 2002;363:167–174. doi: 10.1042/bj3630167. [PMC free article] [PubMed] [Cross Ref]
  • Fujii N, Hayashi T, Hirshman MF, Smith TJ, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnhaum MJ, Witters LA, Thorell A, Goodyear LJ. Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273:1150–1155. doi: 10.1006/bbrc.2000.3073. [PubMed] [Cross Ref]
  • Gallen IW, Macdonald IA. Effect of two methods of hand heating on body temperature, forearm blood flow, and deep venous oxygen saturation. Am J Physiol. 1990;259:E639–E643. [PubMed]
  • Green AL, Simpson EJ, Littlewood JJ, Macdonald IA, Greenhaff PL. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiologica Scandinavia. 1996;158:195–202. doi: 10.1046/j.1365-201X.1996.528300000.x. [PubMed] [Cross Ref]
  • Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271:E821–E826. [PubMed]
  • Greenhaff PL, Casey A, Short AH, Harris R, Söderlund K, Hultman E. The influence of oral creatine supplementation on muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci. 1993;84:565–571. doi: 10.1042/cs0840565. [PubMed] [Cross Ref]
  • Greenhaff PL, Bodin K, Söderlund K, Hultman E. The effect of oral creatine supplementation on skeletal muscle phosphocreatine re-synthesis. Am J Physiol. 1994;266:E725–E730. [PubMed]
  • Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays. 2001;23:1112–1119. doi: 10.1002/bies.10009. [PubMed] [Cross Ref]
  • Hardie DG. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc. 2004;36:28–34. doi: 10.1249/01.MSS.0000106171.38299.64. [PubMed][Cross Ref]
  • Harris RC, Hultman E, Nordesjö LO. Glycogen, glycolytic intermediates and high energy phosphates determined in biopsy samples of musculus femoris of man at rest. Methods in variance values. Scand J Clin Lab Invest. 1974;33:109–120. doi: 10.3109/00365517409082477. [PubMed][Cross Ref]
  • Harris RC, Södurlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992;83:367–374. doi: 10.1042/cs0830367.[PubMed] [Cross Ref]
  • Hayashi T, Hirshman MF, Fujii N, Haninowski SA, Witters LA, Goodyear LJ. Metabolic stress and altered glucose transport activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes. 2000;49:527–531. doi: 10.2337/diabetes.49.4.527. [PubMed] [Cross Ref]
  • Hultman E, Söderlund K, Timmons JA, Cederlad G, Greenhaff PL. Muscle creatine loading in man. J Appl Physiol. 1996;81:232–237. [PubMed]
  • Jentjens R, Jeukendrup AE. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33:117–144. doi: 10.2165/00007256-200333020-00004. [PubMed][Cross Ref]
  • Jorgensen SB, Nielsen JN, Birk JB, Olsen GS, Viollet B, Andreelli F, Schjerling P, Vaulont S, Hardie DG, Hansen BF, Richter EA, Wojtaszewski JFP. The α2–5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes. 2004;53:3074–3081. doi: 10.2337/diabetes.53.12.3074. [PubMed] [Cross Ref]
  • Ju J-S, Smith JL, Oppelt PJ, Fisher JS. Creatine feeding increases GLUT4 expression in rat skeletal muscle. Am J Physiol. 2005;288:E347–E352. [PubMed]
  • Locke M. The cellular stress response to exercise: role of stress proteins. Exerc Sports Sci Rev. 1997;25:105–136. doi: 10.1249/00003677-199700250-00007. [PubMed] [Cross Ref]
  • Low SY, Rennie MJ, Taylor PM. Modulation of glycogen synthesis in rat skeletal muscle by changes in cell volume. J Physiol. 1996;495:299–303. doi: 10.1113/jphysiol.1996.sp021594.[PMC free article] [PubMed] [Cross Ref]
  • Murton AJ, Billeter R, Stephens FB, Des Etages SG, Graber F, Hill RJ, Marimuthu K, Greenhaff PL. Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training. J Appl Physiol. 2014;116:113–125. doi: 10.1152/japplphysiol.00426.2013.[PubMed] [Cross Ref]
  • Newman JE, Hargreaves M, Garnham A, Snow RJ. Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med Sci Sports Exerc. 2003;35:69–74. doi: 10.1097/00005768-200301000-00012. [PubMed] [Cross Ref]
  • Op’t Eijnde B, Richter EA, Henquin J-C, Kiens B, Hespel P. Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiologica Scandinavia. 2001;171:169–176. doi: 10.1046/j.1365-201x.2001.00786.x. [PubMed] [Cross Ref]
  • Op’t Eijnde B, Urso B, Richter EA, Greenhaff PL, Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50:18–23. doi: 10.2337/diabetes.50.1.18. [PubMed] [Cross Ref]
  • Op’t Eijnde B, Derave W, Wojtaszewski JFP, Richter EA, Hespel P. AMP-kinase expression and activity in human skeletal muscle: effects of immobilisation, retraining and creatine supplementation. J Appl Physiol. 2005;98:1228–1233. doi: 10.1152/japplphysiol.00665.2004. [PubMed] [Cross Ref]
  • Ponticos M, Long LuQ, Morgan JE, Hardie DG, Partridge TA, Carling D. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 1998;17:1688–1699. doi: 10.1093/emboj/17.6.1688. [PMC free article][PubMed] [Cross Ref]
  • Puntschart A, Wey E, Jostarndt K, Vogt M, Wittwer M, Widmer HR, Hoppeler H, Billeter R. Expression of fos and jun genes in human skeletal muscle after exercise. Am J Physiol. 1998;274:C129–C137. [PubMed]
  • Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol. 1997;83:1104–1109. [PubMed]
  • Robinson TM, Sewell DA, Hultman E, Greenhaff PL. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol. 1999;87:598–604.[PubMed]
  • Robinson TM, Sewell DA, Casey A, Steenage G, Greenhaff PL. Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. Br J Sports Med. 2000;34:284–288. doi: 10.1136/bjsm.34.4.284. [PMC free article][PubMed] [Cross Ref]
  • Sadoshima J, Izumo S. Tyrosine kinases mediation of c-fos expression by cell swelling in cardiac myocytes. Heart Vessels. 1997;12:194–197. [PubMed]
  • Sewell DA, Robinson TM, Greenhaff PL. Creatine supplementation does not affect human skeletal muscle glycogen content in the absence of prior exercise. J Appl Physiol. 2008;104:508–512. doi: 10.1152/japplphysiol.00787.2007. [PubMed] [Cross Ref]
  • Sherman WM, Costill DL. The marathon: dietary manipulation to optimize performance. Am J Sports Med. 1984;12:44–51. doi: 10.1177/036354658401200107. [PubMed] [Cross Ref]
  • Steinberg GR, Watt MJ, McGee SL, Chan S, Hargreaves M, Febbraio MA, Stapleton D, Kemp BE. Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab. 2006;31:302–312. doi: 10.1139/h06-003. [PubMed] [Cross Ref]
  • Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D. Dissecting the role of 5’-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem. 2006;281:32207–32216. doi: 10.1074/jbc.M606357200. [PubMed] [Cross Ref]
  • Taylor EB, Ellingson WJ, Lamb JD, Chesser DG, Compton CL, Winder WW. Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate. Am J Physiol. 2006;290:E661–E669. [PubMed]
  • Van Loon LJC, Murphy R, Oosterlaar AM, Cameron-Smith D, Hargreaves M, Wagonmakers AJM, Snow R. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci. 2004;106:99–106. doi: 10.1042/CS20030116. [PubMed] [Cross Ref]
  • Volek JS, Rawson ES. Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition. 2004;20:609–614. doi: 10.1016/j.nut.2004.04.014. [PubMed] [Cross Ref]
  • Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999;277:E1–E10. [PubMed]
  • Wojtaszewski JFP, Jørgensen SB, Hellsten Y, Hardie DG, Richter EA. Glycogen dependent effects of AICAR on 5’AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes. 2002;51:284–292. doi: 10.2337/diabetes.51.2.284. [PubMed] [Cross Ref]
  • Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B, Richter EA. Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol. 2003;284:E813–E822. [PubMed]

About the author

Alejandro Ocaña

Soy Alejandro Ocaña, estudie en la NSCA para Preparador Físico CSCS. El principal lema de la NSCA es “Bridging the gap between science and application” (reduciendo la distancia entre la ciencia y su aplicación), su compromiso es el de contribuir a que la labor de entrenadores/preparadores físicos se ajuste lo máximo posible a los avances científicos y a los últimos estándares de calidad y seguridad. Posteriormente, me he especializado en Nutrición clínica/deportiva. Gracias a Athletes Performance, al Máster en Alto Rendimiento del Comité Olímpico Español y a la maestría de nutrición clínica deportiva, pude perfeccionar y ampliar mis conocimientos sobre nutrición y distintas metodologías de entreno. Durante toda mi vida me ha encantado el deporte, he practicado de todo tipo, Pádel, Tenis, Rugby, hubo una época que me dio por el Boxeo y el Taekwondo, luego Natación, pero empecé a disfrutar del deporte y de alto rendimiento con la Gimnasia deportiva, a la que me estuve dedicando durante varios años con gran entusiasmo. A día de hoy, me dedico a Crossfit ® de manera profesional, a la vez que sigo ampliando mis conocimientos.

Add Comment

Click here to post a comment